Laboratorio de Visión Computacional
Actividad 3
Actividad 3
La envoltura convexa se trata de encontrar todos los puntos que se encuentran más al exterior del contorno de una figura, y cuyas líneas que se unan de un punto a otro logren encerrar toda la figura sin dejar ningún segmento fuera de este nuevo poligono creado.
Implemente este algoritmo basado en pseudocódigo de la primer liga en las referencias, y usando como base el código usado para la entrega anterior en clase de la detección de formas.
Aquí unas muestras de las imágenes originales y su respectiva salida después de aplicar el convex hull y dibujar las líneas.
Código completo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Tkinter import * | |
import sys, os, random, Image, ImageTk, ImageDraw | |
from filters_methods import * | |
class Forms: | |
def __init__(self, image_file_path): | |
self.image_file_path = image_file_path | |
image = self.open_image(self.image_file_path) | |
self.temp_image = image | |
self.root = Tk() | |
self.root.title('Forms') | |
self.root.resizable(width=False, height=False) | |
self.imagetk = self.convert_to_imagetk(image) | |
self.label1 = Label(self.root, image=self.imagetk) | |
self.label1.pack(side=LEFT) | |
self.button1 = Button(text='Reset', width=10, | |
command=self.reset_image).pack() | |
self.button2 = Button(text='Forms', width=10, | |
command=self.action).pack() | |
self.button_exit = Button(text='Exit', width=10, | |
command=self.root.destroy).pack() | |
self.root.mainloop() | |
def open_image(self, image_file_path): | |
image = Image.open(image_file_path) | |
image.thumbnail((800, 800), Image.ANTIALIAS) | |
return image | |
def save_image(self, image, width, height): | |
pixels = image.getdata() | |
newimage = Image.new('RGB', (width, height)) | |
newimage.putdata(pixels) | |
newimage.save('output.jpg') | |
def convert_to_imagetk(self, image): | |
return ImageTk.PhotoImage(image) | |
def reset_image(self): | |
image = self.open_image(self.image_file_path) | |
self.update_image(image) | |
def update_image(self, image): | |
self.imagetk = self.convert_to_imagetk(image) | |
self.label1.config(image=self.imagetk) | |
self.label1.pack() | |
self.root.mainloop() | |
def convolution(self, h, f): | |
F = self.open_image(self.image_file_path) | |
width, height = get_image_size(F) | |
k = len(h[1]) | |
for x in range(width): | |
for y in range(height): | |
suma = 0 | |
for i in range(k): | |
z1 = i - k/2 | |
for j in range(k): | |
z2 = j - k/2 | |
try: | |
suma += f.getpixel((x+z1, y+z2))[0]*h[i][j] | |
except: | |
pass | |
suma = int(suma) | |
F.putpixel((x, y), (suma, suma, suma)) | |
return F | |
def bfs(self, image, start_pixel_pos, color): | |
pixels = image.load() | |
width, height = get_image_size(image) | |
queue = [] | |
queue_copy = [] | |
queue.append(start_pixel_pos) | |
original = pixels[start_pixel_pos] | |
while 0 < len(queue): | |
(x, y) = queue.pop(0) | |
current = pixels[x, y] | |
if current == original or current == color: | |
for pos_x in [-1, 0, 1]: | |
for pos_y in [-1, 0, 1]: | |
pixel_x = x + pos_x | |
pixel_y = y + pos_y | |
if pixel_x >= 0 and pixel_x < width and pixel_y >= 0 and pixel_y < height: | |
pixel_data = pixels[pixel_x, pixel_y] | |
if pixel_data == original: | |
pixels[pixel_x, pixel_y] = color | |
image.putpixel((pixel_x, pixel_y), color) | |
queue.append((pixel_x, pixel_y)) | |
queue_copy.append((pixel_x, pixel_y)) | |
return image, queue_copy | |
def gift_wrapping(self, pixels): | |
hull = [min(pixels)] | |
for i in range(len(pixels)): | |
end = pixels[0] | |
for j in range(len(pixels) - 1): | |
if 0 < (hull[i][0] - pixels[j][0])*(end[1] - pixels[j][1]) - (end[0] - pixels[j][0])*(hull[i][1] - pixels[j][1]): | |
side = -1 | |
else: | |
side = 1 | |
if end == hull[i] or side == -1: | |
end = pixels[j] | |
hull.append(end) | |
if end == hull[0]: | |
break | |
return hull | |
def convex_hull(self, image): | |
width, height = get_image_size(image) | |
drawing = ImageDraw.Draw(image) | |
pixels = image.load() | |
hulls = [] | |
for i in range(width): | |
for j in range(height): | |
# Ahora detectamos los contornos por su color blanco | |
if pixels[i, j] == (255, 255, 255): | |
# Obtenemos todos los pixeles dentro del contorno | |
# y usamos el metodo grift wrapping para obtener | |
# los puntos que estan mas al exterior del contorno actual | |
image, pixels_in = self.bfs(image, (i, j), (0, 0, 100)) | |
hulls.append(self.gift_wrapping(pixels_in)) | |
for i in range(len(hulls)): | |
for j in range(len(hulls[i]) - 1): | |
linea = (hulls[i][j][0], hulls[i][j][1], hulls[i][j+1][0], hulls[i][j+1][1]) | |
drawing.line(linea) | |
def action(self): | |
f = self.open_image(self.image_file_path) | |
f = grayscale(f) | |
h = [[0, 1, 0], [1, -4, 1], [0, 1, 0]] | |
image = self.convolution(h, f) | |
image = average_allneighbors(image) | |
image = average_allneighbors(image) | |
image = binarization(image, 20) | |
self.convex_hull(image) | |
self.update_image(image) | |
def main(): | |
if len(sys.argv) > 0: | |
image_file_path = sys.argv[1] | |
if os.path.isfile(image_file_path): | |
Forms(image_file_path) | |
else: | |
print 'Image file does not exist' | |
else: | |
print 'First parameter must be an image file name' | |
if __name__ == '__main__': | |
main() |
Referencias:
Gift Wrapping
Convex Hull
Bien, hasta lidia con múltiples objetos simultáneamente. 8 pts.
ResponderEliminar