Processing math: 100%

14 de febrero de 2013

Noisy Channel

Information Theory and Coding Methods
Assignment 1

I realized that plotting the length of the word against the transmission success rate, in all probability graphs using different frequency zeros, seem to be related to the same function, which I believe is exponential.

This is one of the graphics given.


In the next two graphics we can appreciate all the information given by the programs and script.

The next graphic is for word length versus frequency of zeros, and the color is given by the average percentage of correct transmitions, so yellow indicate high percentage of correct transmitions and black is practically a bad level.


And here we have the same but with the difference that the average is releated with the radius of the bubbles.


Código


For this assignment I write code in different languages, but I only run channel.sh in the terminal, and then channel.R inside the R console.

channel.py

import sys, random
def bit_generator(zero_freq):
if random.uniform(0, 1) < zero_freq:
return '0'
else:
return '1'
def word_generator(word_length, zero_freq):
word = ''
for i in range(word_length):
word = word + bit_generator(zero_freq)
return word
def transmitter(word, word_length, zeros_occur, ones_occur):
sended = ''
for i in range(word_length):
if word[i] == '0':
if random.random() < zeros_occur:
sended += '0'
else:
sended += '1'
else:
if random.random() < ones_occur:
sended += '1'
else:
sended += '0'
return sended
def simulation(word_length, repetitions, zero_freq, zeros_occur, ones_occur):
word = word_generator(word_length, zero_freq)
counter = 0.0
for i in range(repetitions):
sended = transmitter(word, word_length, zeros_occur, ones_occur)
if word == sended:
counter += 1
porcentage = counter/repetitions
print '%.2f' % porcentage
def main():
if len(sys.argv) > 5:
word_length = int(sys.argv[1])
repetitions = int(sys.argv[2])
zero_freq = float(sys.argv[3])
zeros_occur = float(sys.argv[4])
ones_occur = float(sys.argv[5])
simulation(word_length, repetitions, zero_freq, zeros_occur, ones_occur)
else:
print 'Missing parameters'
if __name__ == '__main__':
main()
view raw channel.py hosted with ❤ by GitHub

channel.sh

limit=512
potency=0
length=1
words=20
repetitions=30
zeros_occur=0.8
ones_occur=0.9
touch channel.dat
rm channel.dat
touch channel.dat
while [[ length -le limit ]]
do
echo Running with length $length
for zero_freq in 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
do
echo And frequency of zeros $zero_freq
touch temp.dat
rm temp.dat
touch temp.dat
iteration=1
while [[ iteration -le words ]]
do
response=`python channel.py length repetitions zero_freq zeros_occur $ones_occur`
echo $response >> temp.dat
iteration=((iteration+1))
done
response=`awk -f channel.awk -v len=length -v zero_freq=zero_freq temp.dat`
echo potency zero_freq $response >> channel.dat
rm temp.dat
done
echo '' >> channel.dat
length=((length*2))
potency=((potency+1))
done
`gnuplot channel.plot`
view raw channel.sh hosted with ❤ by GitHub

channel.awk

{
sum += $1
counter++
}
END {
print sum/counter
}
view raw channel.awk hosted with ❤ by GitHub

channel.plot

set term postscript eps color 20
set pm3d map
set xlabel 'Word length'
set ylabel 'Frecuency of zeros'
set title 'Average porcentage of correct transmitions'
set output 'channel.eps'
splot 'channel.dat' using 1:2:($3*100)
view raw channel.plot hosted with ❤ by GitHub

channel.R

postscript("channel_bubbles.eps")
data <- read.table("channel.dat", sep = " ")
circles_radius <- sqrt(data$V3/pi)
symbols(dataV1, dataV2, circles = circles_radius,
inches = 0.35, fg = "white", bg = "#336699",
xlab = "Word length", ylab = "Frecuency of zeros",
main = "Average porcentage of correct transmitions")
dev.off()
view raw channel.R hosted with ❤ by GitHub

References:
Noisy channel by Elisa Schaeffer

1 comentario:

  1. Quería una desviación estándar que te hubiera salido bien simple en R :/ 4 pts código.

    Lo de correr R en el terminal para poder juntar todo en un bash:
    https://stat.ethz.ch/pipermail/r-help/2007-September/140676.html

    El reporte vale 5.

    ResponderEliminar

Nota: solo los miembros de este blog pueden publicar comentarios.