Visión Computacional
Tarea 3
Tarea 3
La tarea de esta semana fue la detección de líneas. Veamos los resultados directamente en la comparación de imágenes originales y las imágenes después de la detección de líneas.
Aquí una más, donde tuve que cambair el color de líneas horizontales porque los tonos de rojo no se distinguían muy bien.
Código
El código completo es el siguiente, y como en ocasiones anteriores, el parámetro que necesita es la ruta a una imagen.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Tkinter import * | |
import sys, os, random, math, Image, ImageTk | |
from filters_methods import * | |
class Lines: | |
def __init__(self, image_file_path): | |
self.image_file_path = image_file_path | |
image = self.open_image(self.image_file_path) | |
self.temp_image = image | |
self.root = Tk() | |
self.root.title('Lines') | |
self.root.resizable(width=False, height=False) | |
self.imagetk = self.convert_to_imagetk(image) | |
self.label1 = Label(self.root, image=self.imagetk) | |
self.label1.pack(side=LEFT) | |
self.button1 = Button(text='Reset', width=10, | |
command=self.reset_image).pack() | |
self.button2 = Button(text='Lines', width=10, | |
command=self.action).pack() | |
self.button_exit = Button(text='Exit', width=10, | |
command=self.root.destroy).pack() | |
self.root.mainloop() | |
def open_image(self, image_file_path): | |
image = Image.open(image_file_path) | |
image.thumbnail((500, 500), Image.ANTIALIAS) | |
return image | |
def convert_to_imagetk(self, image): | |
return ImageTk.PhotoImage(image) | |
def reset_image(self): | |
image = self.open_image(self.image_file_path) | |
self.update_image(image) | |
def update_image(self, image): | |
self.imagetk = self.convert_to_imagetk(image) | |
self.label1.config(image=self.imagetk) | |
self.label1.pack() | |
self.root.mainloop() | |
def convolution(self, h, f): | |
F = self.open_image(self.image_file_path) | |
width, height = get_image_size(F) | |
k = len(h[1]) | |
for x in range(width): | |
for y in range(height): | |
suma = 0 | |
for i in range(k): | |
z1 = i - k/2 | |
for j in range(k): | |
z2 = j - k/2 | |
try: | |
suma += f.getpixel((x+z1, y+z2))[0]*h[i][j] | |
except: | |
pass | |
suma = int(suma) | |
F.putpixel((x, y), (suma, suma, suma)) | |
return F | |
def detect_lines(self, image, imagenx, imageny): | |
width, height = get_image_size(image) | |
x_lines = imagenx.load() | |
y_lines = imageny.load() | |
dictionary = {} | |
complete_list = [] | |
for i in range(width): | |
temp_list = [] | |
for j in range(height): | |
x = x_lines[i, j][0] | |
y = y_lines[i, j][0] | |
angle = 0.0 | |
if x + y <= 0.0: | |
angle = None | |
elif x == 0 and y == 255: | |
angle = 90 | |
else: | |
angle = math.degrees(y/x) | |
if angle == None: | |
temp_list.append((None, None)) | |
else: | |
rho = abs((i)*math.cos(angle) + (j)*math.sin(angle)) | |
if i > 0 and j > 0 and i < width and j < height: | |
if (rho, angle) in dictionary: | |
dictionary[(rho, angle)] += 1 | |
else: | |
dictionary[(rho, angle)] = 1 | |
temp_list.append((rho, angle)) | |
complete_list.append(temp_list) | |
frecuency = {} | |
dictionary = sorted(dictionary.items(), key = lambda tupla: tupla[1], reverse = True) | |
for i in range(len(dictionary)): | |
(rho, angle) = dictionary[i][0] | |
frecuency[(rho, angle)] = dictionary[1] | |
x_counter = 0 | |
y_counter = 0 | |
for i in range(width): | |
for j in range(height): | |
if i > 0 and j > 0 and i < width and j < height: | |
rho, angle = complete_list[i][j] | |
if (rho, angle) in frecuency: | |
if angle == 0: | |
image.putpixel((i, j), (255, 0, 0)) | |
x_counter += 1 | |
if angle == 90: | |
image.putpixel((i, j), (120, 0, 0)) | |
y_counter += 1 | |
print 'Vertical pixels:', x_counter | |
print 'Horizontal pixels:', y_counter | |
return image | |
def action(self): | |
f = self.open_image(self.image_file_path) | |
f = grayscale(f) | |
hx = [[-1, -1, -1], [2, 2, 2], [-1, -1, -1]] | |
hy = [[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]] | |
imagex = self.convolution(hx, f) | |
imagey = self.convolution(hy, f) | |
imagex = binarization(imagex, 20) | |
imagex.save('xlines.png', 'png') | |
imagey = binarization(imagey, 20) | |
imagey.save('ylines.png', 'png') | |
image = self.detect_lines(f, imagex, imagey) | |
self.update_image(image) | |
def main(): | |
if len(sys.argv) > 0: | |
image_file_path = sys.argv[1] | |
if os.path.isfile(image_file_path): | |
Lines(image_file_path) | |
else: | |
print 'Image file does not exist' | |
else: | |
print 'First parameter must be an image file name' | |
if __name__ == '__main__': | |
main() |
Podemos ver en la captura anterior, que en el terminal se imprimen los contadores para los pixeles horizontales y verticales.
Pero que atan </3... :( (o más bien atan2, está con madre). El código no relevante que proviene de fases anteriores puede estar simplemente en el Git y aquí en la entrada va lo nuevo/relevante. 4 pts.
ResponderEliminar